三级一区在线视频先锋_丁香另类激情小说_中文字幕一区二区三_一本一道久久a久久精品综合蜜臀_一区二区三区四区国产精品_日韩**一区毛片_在线观看日韩电影_1000部国产精品成人观看_免费不卡在线视频_亚洲国产日日夜夜_国产亚洲精品福利_亚洲精品一区二区三区在线观看_欧美美女一区二区三区_日韩欧美色电影_欧美aaa在线_久久这里只有精品6

讀書月攻略拿走直接抄!
歡迎光臨中圖網(wǎng) 請 | 注冊
> >
高效分子離子傳遞膜(英文版)

包郵 高效分子離子傳遞膜(英文版)

出版社:科學(xué)出版社出版時間:2023-03-01
開本: B5 頁數(shù): 312
中 圖 價:¥120.0(7.5折) 定價  ¥160.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

高效分子離子傳遞膜(英文版) 版權(quán)信息

  • ISBN:9787030748867
  • 條形碼:9787030748867 ; 978-7-03-074886-7
  • 裝幀:一般膠版紙
  • 冊數(shù):暫無
  • 重量:暫無
  • 所屬分類:>

高效分子離子傳遞膜(英文版) 內(nèi)容簡介

本書結(jié)合作者團隊的近期新研究成果,重點介紹了有機-無機復(fù)合膜和二維層狀膜在有機溶劑納濾、氫燃料電池、鋰-硫電池中的應(yīng)用,分析了分子和離子級分離膜技術(shù)與膜過程領(lǐng)域的發(fā)展現(xiàn)狀、存在問題及優(yōu)化方法,提出了膜過程中離子/分子級分離與傳遞過程強化的策略。本書的出版將對改善該學(xué)科的知識體系,明確該學(xué)科前言研究現(xiàn)狀與進展,促進膜分離技術(shù)與膜過程領(lǐng)域的發(fā)展具有積極意義。同時,本書也可為該領(lǐng)域的研究人員和工程師提供新的技術(shù)研發(fā)思路。

高效分子離子傳遞膜(英文版) 目錄

Contents
1 Introduction to Membrane 1
Jingtao Wang and Wenjia Wu
2 Composite Membrane for Organic Solvent Nanofiltration 7
Wenpeng Li, Shiyuan Liu, and Jingjing Chen
3 Lamellar Membrane for Organic Solvent Nanofiltration 65
Xiaoli Wu, Yifan Li, and Jingtao Wang
4 Composite Proton Exchange Membrane for Hydrogen Fuel Cell 103
Guoli Zhou, Jingchuan Dang, and Jingtao Wang
5 Lamellar and Nanofiber-Based Proton Exchange Membranesfor Hydrogen Fuel Cell 167
Jianlong Lin, Wenjia Wu, and Jingtao Wang
6 Composite Separator or Electrolyte for Lithium-Sulfur Battery 219
Weijie Kou, Jiajia Huang, and Wenjia Wu
7 Composite Electrolyte for All-Solid-State Lithium Battery 253
Jie Zhang, Yafang Zhang, and Jingtao Wang
展開全部

高效分子離子傳遞膜(英文版) 節(jié)選

Chapter 1 Introduction to Membrane Jingtao Wang and Wenjia Wu In the past decades, membrane technology has been widely utilized in various separation processes, because of their low-energy consumption, low-cost, reliability, and scalability when compared with conventional separation processes like distillation, extraction, or crystallization [1,2]. In order to further increase the competitiveness, intensive efforts have been made from improving the separation efficiency of existing membrane processes to exploring new applications. As the core part, membrane materials with high permeability, high selectivity, and high stability are extremely desired since they can significantly accelerate the practical application of membrane technology [3, 4]. To date, plenty of membranes with different pore sizes have been developed, such as polymer membrane, ceramic membrane, two-dimensional (2D) lamellar membrane, molecule sieving membrane, hybrid membrane, and composite membrane [5-10]. These membranes have been widely used for different separation processes including, microfiltration, ultrafiltration, nanofiltration, reverse osmosis, gas separation, and proton/ion conduction, etc. [11, 12]. For each category of membrane, the physical and chemical environments of transfer channels are of great importance in manipulating the comprehensive properties. The physical environments are dictated by the connectivity, tortuosity, and size of transfer channels, while the chemical environments are dictated by the type, amount, and distribution of functional groups within transfer channels [13]. Generally, ideal transfer channels should integrate the following attributes: (i) they should be short with appropriate transfer environment to endow membranes with high permeability, (ii) the channel size distribution should be narrow to endow membranes with high selectivity, and (iii) the chemical and mechanical stability should be high to endow membranes with long-term operation stability [14]. Currently, polymers are the dominant membrane materials, due to their easy processability and high scale-up capability. For conventional polymer membranes, breaking the permeability-selec-tivity or permeability-stability trade-off remains a challenge. The great progress in polymer membranes over the past decades has brought about the booming of novel kinds of structured membranes including, hybrid membrane, composite membrane, and phase-separated membrane, which push the separation performances of polymer membranes to new records [15-18]. Hybrid membrane is an intricately structured membrane configuration, owing to its merit of coupling the good flexibility and processability of polymers with the regular topological structure as well as the tunable functionality of fillers [19, 20]. Impermeable fillers such as silica particles, graphene oxide (GO) nanosheets, and organic/inorganic nanorods can induce a distortion of chain alignment to improve the free volume property or induce the construction of long-range, ordered transfer channels in membrane [21,22]. Permeable fillers such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and zeolite can afford additional transfer pathways and mechanisms to membrane including, molecule sieving, and selective adsorption [23, 24]. Composite membrane for molecule transfer is generally a heterogeneous membrane with dense separation layer and porous support layer, where the separation layer and the support layer can be separately optimized to achieve simultaneously high separation performance and stability [25,26]. Particularly, the fabrication of composite membrane with an ultrathin separation layer is deemed as a delicate strategy to achieve highly permeable membrane, which is one of the most important pursuits for membrane technology [27, 28]. At present, researches related to composite membranes mainly focus on the precise manipulation of physical structure and chemical component of separation layer; however, these remain challenging due to the pursuit of ultrathin thickness. For proton/ion separation, electrospinning is increasingly recognized as a powerful mean for introducing unique phase-separated architectures into composite membranes [29]. Indeed, it allows the elaboration of composite membranes with a rather facile mean to control of the long-range organization/distribution/percolation ofhydrophilic and hydrophobic domains of the ionomer by adjusting the type of electrospun material, the volume fraction of nanofibers, and the experimental conditions [30]. Moreover, electrospinning can impart uniaxial alignment of polymer chains within nanofibers, resulting in enhanced mechanical properties. Importantly, it can promote the formation of interconnected transfer channels, which facilitate the improvement in proton/ion conduction [31]. In recent years, 2D nanosheets, with a thickness of one to a few atoms, have become the promising building blocks for ad

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網(wǎng)
在線客服
三级一区在线视频先锋_丁香另类激情小说_中文字幕一区二区三_一本一道久久a久久精品综合蜜臀_一区二区三区四区国产精品_日韩**一区毛片_在线观看日韩电影_1000部国产精品成人观看_免费不卡在线视频_亚洲国产日日夜夜_国产亚洲精品福利_亚洲精品一区二区三区在线观看_欧美美女一区二区三区_日韩欧美色电影_欧美aaa在线_久久这里只有精品6
eeuss鲁片一区二区三区| 欧美在线999| 狠狠色伊人亚洲综合成人| 亚洲自拍偷拍av| 一区二区三区中文字幕精品精品 | 亚洲一区二三| 天堂√在线观看一区二区| 日韩av电影免费播放| 玛丽玛丽电影原版免费观看1977| 国产欧美日韩亚洲| 国内一区在线| 欧美日产一区二区三区在线观看| 清纯唯美一区二区三区| 午夜一区二区三区| 在线观看一区二区视频| 制服丝袜av成人在线看| 欧美本精品男人aⅴ天堂| 国产区在线观看成人精品| 中文字幕亚洲不卡| 亚洲综合精品久久| 精品午夜一区二区三区在线观看| 国产丶欧美丶日本不卡视频| 99re这里只有精品首页| 精品一卡二卡三卡四卡日本乱码| 欧美一区三区二区在线观看| 一区二区三区在线视频111| 欧美色大人视频| 欧美成人精品高清在线播放| 久久精品视频免费| 亚洲精品成人a在线观看| 日韩电影在线观看一区| 国产99久久久国产精品潘金网站| 99久久免费国| 午夜精品电影在线观看| 色哟哟国产精品| 精品国免费一区二区三区| 亚洲精品一区二区三区蜜桃下载| 欧美日本韩国在线| 亚洲人成77777| 在线观看一区二区视频| 欧美裸体一区二区三区| 日韩欧美国产1| 亚洲美腿欧美偷拍| 亚洲精品国产无天堂网2021| 亚洲精品网站在线观看| 亚洲va韩国va欧美va| 久久精品二区亚洲w码| 国产成人夜色高潮福利影视| av电影在线观看一区| 国产亚洲欧美一区二区| 欧美男人的天堂| 在线视频一区二区三区| 欧美一区二区三区小说| 国产日韩欧美在线一区| 亚洲综合男人的天堂| 久久精品国产**网站演员| 日本不卡一区二区三区高清视频| 久久精品国产亚洲高清剧情介绍 | 亚洲一区二区在线看| 欧美精品亚洲二区| 国产亚洲欧美在线| 亚洲一线二线三线视频| 韩国女主播成人在线| 99在线精品观看| 日韩激情视频| 欧美一区二区三区影视| 亚洲视频免费在线观看| 免费成人av资源网| 91麻豆免费在线观看| 神马影院午夜我不卡影院| 日本电影亚洲天堂一区| 1024成人网| 精品在线播放免费| 国产精品日韩高清| 欧美伊人久久久久久午夜久久久久| 欧美精品一区在线观看| 亚洲最新视频在线观看| 国产尤物一区二区| 牛人盗摄一区二区三区视频| 欧美日本在线看| 亚洲女与黑人做爰| 国产91精品欧美| 日本不卡高清视频一区| 日韩欧美在线影院| 1024亚洲合集| 国产精品538一区二区在线| 麻豆av一区二区三区久久| 91精品国产91久久综合桃花| 亚洲综合一区在线| 99久久er热在这里只有精品15 | 婷婷亚洲久悠悠色悠在线播放| 狠狠色丁香婷婷综合| 久久国产麻豆精品| 精品一卡二卡三卡四卡日本乱码| 欧美精品乱人伦久久久久久| 亚洲欧美韩国综合色| 成人午夜激情影院| 一区不卡字幕| 国产精品美女久久久久高潮| 国内精品在线播放| 日韩高清国产精品| 国产精品免费视频观看| 国产 欧美在线| 色婷婷久久久亚洲一区二区三区| 欧美国产激情一区二区三区蜜月| 精品午夜久久福利影院| 一级做a爰片久久| 专区另类欧美日韩| 99久久国产综合精品麻豆| 欧美电影一区二区| 免费久久精品视频| 欧美日本韩国在线| 国产精品福利一区| 91在线精品观看| 欧美一级欧美一级在线播放| 乱一区二区av| 日本道色综合久久| 日本午夜一区二区| 色综合久久久久久久久五月| 欧美xingq一区二区| 免费人成在线不卡| 欧美老女人在线| 久久精工是国产品牌吗| 亚洲一区二区不卡视频| 一区二区三区日韩| 国产三级精品在线不卡| 久久精品人人做人人爽97| 久久99国产精品久久99| 欧美深深色噜噜狠狠yyy| 国产精品久久99| 精品九九九九| 精品国产91久久久久久久妲己| 国产乱对白刺激视频不卡| 欧美人体做爰大胆视频| 国产美女在线精品| 制服视频三区第一页精品| 国产寡妇亲子伦一区二区| 欧美挠脚心视频网站| 国产一区二区视频在线| 91精品国产免费| 国产91对白在线观看九色| 日韩一级黄色大片| 国产一区二区免费在线| 精品美女一区二区| 99精品桃花视频在线观看| 久久亚洲私人国产精品va媚药| 成人激情动漫在线观看| 精品日韩av一区二区| 91免费国产在线| ㊣最新国产の精品bt伙计久久| 精品不卡在线| 亚洲午夜精品网| 日本黄网免费一区二区精品| 夜夜嗨av一区二区三区中文字幕| 三区精品视频观看| 蜜臀va亚洲va欧美va天堂| 欧美日韩亚洲综合在线 | 欧美极品美女视频| 极品校花啪啪激情久久| 亚洲综合久久久久| 在线中文字幕一区二区| 国产精品一区二区久久精品爱涩| 欧美电影精品一区二区| 国产精品久久久久久免费观看 | 一区二区三区在线影院| 亚洲欧美日韩国产成人综合一二三区 | 国产91精品露脸国语对白| 久久久国产精品午夜一区ai换脸| 九色综合日本| 日本伊人色综合网| 一本到三区不卡视频| 国产麻豆精品久久一二三| 久久一夜天堂av一区二区三区| 国产欧美精品一区二区三区| 亚洲大片精品永久免费| 91精品国产综合久久婷婷香蕉 | 国产精品久久久久久久免费大片| 亚洲国产美国国产综合一区二区| 欧美午夜影院一区| 91蝌蚪porny成人天涯| 亚洲午夜私人影院| 欧美一区二区三区不卡| 久久国产精品99久久久久久丝袜| 亚洲乱码国产乱码精品精可以看| 欧美视频一区二| 99re视频在线| 视频在线在亚洲| 精品国产污网站| 日韩欧美一区二区三区四区| 国产成人亚洲综合a∨婷婷| 国产精品丝袜久久久久久app| 一本一道久久a久久精品综合| 波多野结衣欧美| 夜夜亚洲天天久久| 欧美不卡在线视频| 亚洲三区在线| av不卡在线观看| 日韩中文字幕av电影| 国产欧美一二三区| 亚洲一区二区三区四区中文|