三级一区在线视频先锋_丁香另类激情小说_中文字幕一区二区三_一本一道久久a久久精品综合蜜臀_一区二区三区四区国产精品_日韩**一区毛片_在线观看日韩电影_1000部国产精品成人观看_免费不卡在线视频_亚洲国产日日夜夜_国产亚洲精品福利_亚洲精品一区二区三区在线观看_欧美美女一区二区三区_日韩欧美色电影_欧美aaa在线_久久这里只有精品6

讀書月攻略拿走直接抄!
歡迎光臨中圖網 請 | 注冊
> >>
長距離相互作用.隨機及分數維動力學

包郵 長距離相互作用.隨機及分數維動力學

出版社:高等教育出版社出版時間:2010-06-01
開本: 16開 頁數: 308
本類榜單:自然科學銷量榜
中 圖 價:¥55.4(8.1折) 定價  ¥68.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>
買過本商品的人還買了

長距離相互作用.隨機及分數維動力學 版權信息

長距離相互作用.隨機及分數維動力學 本書特色

《長距離相互作用、隨機及分數維動力學》:Nonlinear Physical Science focuses on the recent advances of fundamental theories and principles, analytical and symbolic approaches, as well as computational techniques in nonlinear physical science and nonlinear mathematics with engineering applications.

長距離相互作用.隨機及分數維動力學 內容簡介

in memory of dr. george zaslavsky, long-range interactions, stochasticity and fractional dynamics covers'the recent developments of long-range interaction, fractional dynamics, brain dynamics and stochastic theory of turbulence, each chapter was written by established scientists in the field. the book is dedicated to dr. george zaslavsky, who was one of three founders of the theory of hamiltonian chaos. the book discusses self-similarity and stochasticity and fractionality for discrete and continuous dynamical systems, as well as long-range interactions and diluted networks. a comprehensive theory for brain dynamics is also presented. in addition, the complexity and stochasticity for soliton chains and turbulence are addressed.
the book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering.

長距離相互作用.隨機及分數維動力學 目錄

1 fractional zaslavsky and henon discrete maps
vasily e. tarasov
1.1 introduction
1.2 fractional derivatives
1.2.1 fractional riemann-liouville derivatives
1.2.2 fractional caputo derivatives
1.2.3 fractional liouville derivatives
1.2.4 interpretation of equations with fractional derivatives.
1.2.5 discrete maps with memory
1.3 fractional zaslavsky maps
1.3.1 discrete chirikov and zaslavsky maps
1.3.2 fractional universal and zaslavsky map
1.3.3 kicked damped rotator map
1.3.4 fractional zaslavsky map from fractional differential equations
1.4 fractional h6non map
1.4.1 henon map
1.4.2 fractional henon map
1.5 fractional derivative in the kicked term and zaslavsky map
1.5.1 fractional equation and discrete map
1.5.2 examples
1.6 fractional derivative in the kicked damped term and generalizations of zaslavsky and henon maps
1.6.1 fractional equation and discrete map
1.6.2 fractional zaslavsky and henon maps
1.7 conclusion
references
2 self-similarity, stochasticity and fractionality
vladimir v uchaikin
2.1 introduction
2.1.1 ten years ago
2.1.2 two kinds of motion
2.1.3 dynamic self-similarity
2.1.4 stochastic self-similarity
2.1.5 self-similarity and stationarity
2.2 from brownian motion to levy motion
2.2.1 brownian motion
2.2.2 self-similar brownian motion in nonstationary nonhomogeneous environment
2.2.3 stable laws
2.2.4 discrete time levy motion
2.2.5 continuous time levy motion
2.2.6 fractional equations for continuous time levy motion
2.3 fractional brownian motion
2.3.1 differential brownian motion process
2.3.2 integral brownian motion process
2.3.3 fractional brownian motion
2.3.4 fractional gaussian noises
2.3.5 barnes and allan model
2.3.6 fractional levy motion
2.4 fractional poisson motion
2.4.1 renewal processes
2.4.2 self-similar renewal processes
2.4.3 three forms of fractal dust generator
2.4.4 nth arrival time distribution
2.4.5 fractional poisson distribution
2.5 fractional compound poisson process
2.5.1 compound poisson process
2.5.2 levy-poisson motion
2.5.3 fractional compound poisson motion
2.5.4 a link between solutions
2.5.5 fractional generalization of the levy motion
acknowledgments
appendix. fractional operators
references
3 long-range interactions and diluted networks
antonia ciani, duccio fanelli and stefano ruffo
3.1 long-range interactions
3.1.1 lack of additivity
3.1.2 equilibrium anomalies: ensemble inequivalence, negative specific heat and temperature jumps
3.1.3 non-equilibrium dynamical properties
3.1.4 quasi stationary states
3.1.5 physical examples
3.1.6 general remarks and outlook
3.2 hamiltonian mean field model: equilibrium and out-of- equilibrium features
3.2.1 the model
3.2.2 equilibrium statistical mechanics
3.2.3 on the emergence of quasi stationary states: non-
equilibrium dynamics
3.3 introducing dilution in the hamiltonian mean field model
3.3.1 hamiltonian mean field model on a diluted network
3.3.2 on equilibrium solution of diluted hamiltonian mean field
3.3.3 on quasi stationary states in presence of dilution
3.3.4 phase transition
3.4 conclusions
acknowledgments
references
4 metastability and transients in brain dynamics: problems and rigorous results
valentin s. afraimovich, mehmet k. muezzinoglu and
mikhail i. rabinovich
4.1 introduction: what we discuss and why now
4.1.1 dynamical modeling of cognition
4.1.2 brain imaging
4.1.3 dynamics of emotions
4.2 mental modes
4.2.1 state space
4.2.2 functional networks
4.2.3 emotion-cognition tandem
4.2.4 dynamical model of consciousness
4.3 competition--robustness and sensitivity
4.3.1 transients versus attractors in brain
4.3.2 cognitive variables
4.3.3 emotional variables
4.3.4 metastability and dynamical principles
4.3.5 winnerless competition--structural stability of transients
4.3.6 examples: competitive dynamics in sensory systems
4.3.7 stable heteroclinic channels
4.4 basic ecological model
4.4.1 the lotka-volterra system
4.4.2 stress and hysteresis
4.4.3 mood and cognition
4.4.4 intermittent heteroclinic channel
4.5 conclusion
acknowledgments
appendix 1
appendix 2
references
5 dynamics of soliton chains: from simple to complex and chaotic motions
konstantin a. gorshkov, lev a. ostrovsky and yury a. stepanyants
5.1 introduction
5.2 stable soliton lattices and a hierarchy of envelope solitons
5.3 chains of solitons within the framework of the gardner model
5.4 unstable soliton lattices and stochastisation
5.5 soliton stochastisation and strong wave turbulence in a resonator with external sinusoidal pumping
5.6 chains of two-dimensional solitons in positive-dispersion media
5.7 conclusion
few words in memory of george m. zaslavsky
references
6 what is control of turbulence in crossed fields?-don't even think of eliminating all vortexes!
dimitri volchenkov
6.1 introduction
6.2 stochastic theory of turbulence in crossed fields: vortexes of all sizes die out, but one
6.2.1 the method of renormalization group
6.2.2 phenomenology of fully developed isotropic turbulence
6.2.3 quantum field theory formulation of stochastic navier-stokes turbulence
6.2.4 analytical properties of feynman diagrams
6.2.5 ultraviolet renormalization and rg-equations
6.2.6 what do the rg representations sum?
6.2.7 stochastic magnetic hydrodynamics
6.2.8 renormalization group in magnetic hydrodynamics
6.2.9 critical dimensions in magnetic hydrodynamics
6.2.10 critical dimensions of composite operators in magnetic hydrodynamics
6.2.11 operators of the canonical dimension d = 2
6.2.12 vector operators of the canonical dimension d = 3
6.2.13 instability in magnetic hydrodynamics
6.2.14 long life to eddies of a preferable size
6.3 in search of lost stability
6.3.1 phenomenology of long-range turbulent transport in the scrape-off layer (sol) of thermonuclear reactors
6.3.2 stochastic models of turbulent transport in cross-field systems
6.3.3 iterative solutions in crossed fields
6.3.4 functional integral formulation of cross-field turbulent transport
6.3.5 large-scale instability of iterative solutions
6.3.6 turbulence stabilization by the poloidal electric drift
6.3.7 qualitative discrete time model of anomalous transport in the sol
6.4 conclusion
references
7 entropy and transport in billiards
m. courbage and s.m. saberi fathi
7.1 introduction
7.2 entropy
7.2.1 entropy in the lorentz gas
7.2.2 some dynamical properties of the barrier billiard model
7.3 transport
7.3.1 transport in lorentz gas
7.3.2 transport in the barrier billiard
7.4 concluding remarks
references
index
展開全部

長距離相互作用.隨機及分數維動力學 節選

《長距離相互作用、隨機及分數維動力學》內容簡介:In memory of Dr. George Zaslavsky, Long-range Interactions, Stochasticity and Fractional Dynamics covers'the recent developments of long-range interaction, fractional dynamics, brain dynamics and stochastic theory of turbulence, each chapter was written by established scientists in the field. The book is dedicated to Dr. George Zaslavsky, who was one of three founders of the theory of Hamiltonian chaos. The book discusses self-similarity and stochasticity and fractionality for discrete and continuous dynamical systems, as well as long-range interactions and diluted networks. A comprehensive theory for brain dynamics is also presented. In addition, the complexity and stochasticity for soliton chains and turbulence are addressed. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering.

長距離相互作用.隨機及分數維動力學 相關資料

插圖:Note that the continuous limit of discrete systems with power-law long-range interactions gives differential equations with derivatives of non-integer orders with respect to coordinates (Tarasov and Zaslavsky, 2006; Tarasov, 2006). Fractional differentiation with respect to time is characterized by long-term memory effects that correspond to intrinsic dissipative processes in the physical systems. The memory effects to discrete maps mean that their present state evolution depends on all past states. The discrete maps with memory are considered in the papers (Fulinski and Kleczkowski, 1987;Fick et al., 1991; Giona, 1991; Hartwich and Fick, 1993; Gallas, 1993; Stanislavsky,2006; Tarasov and Zaslavsky, 2008; Tarasov, 2009; Edelman and Tarasov, 2009).The interesting question is a connection of fractional equations of motion and thediscrete maps with memory. This derivation is realized for universal and standard maps in (Tarasov and Zaslavsky, 2008; Tarasov, 2009). It is important to derive discrete maps with memory from equations of motion with fractional derivatives. It was shown (Zaslavsky et al., 2006) that perturbed by aperiodic force, the nonlinear system with fractional derivative exhibits a new type of chaotic motion called the fractional chaotic attractor.

長距離相互作用.隨機及分數維動力學 作者簡介

編者:羅朝俊 (墨西哥)阿弗萊諾維奇(Valentin Afraimovich) 叢書主編:(瑞典)伊布拉基莫夫Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville,USA.Dr. Valentin Afraimovich is a Proiessor at San Luis Potosi University, Mexico.

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
三级一区在线视频先锋_丁香另类激情小说_中文字幕一区二区三_一本一道久久a久久精品综合蜜臀_一区二区三区四区国产精品_日韩**一区毛片_在线观看日韩电影_1000部国产精品成人观看_免费不卡在线视频_亚洲国产日日夜夜_国产亚洲精品福利_亚洲精品一区二区三区在线观看_欧美美女一区二区三区_日韩欧美色电影_欧美aaa在线_久久这里只有精品6
国产精品久久午夜| 51精品国自产在线| 国产精品一区二区三区四区五区| 97精品超碰一区二区三区| 成人三级伦理片| 一本一道久久a久久精品综合 | 欧美精品丝袜中出| 欧美性生活一区| 欧美伦理视频网站| 精品国产电影一区二区 | 午夜精品爽啪视频| 狠狠色丁香久久婷婷综| 国产成人无遮挡在线视频| 成人三级伦理片| 国产欧美日韩一区二区三区| 涩涩涩999| 欧美午夜精品一区| 精品国产髙清在线看国产毛片| 国产婷婷色一区二区三区四区| 国产精品二三区| 亚洲成av人片在www色猫咪| 免费观看成人av| 欧美一区二区网站| 日韩免费视频线观看| 国产精品久99| 日韩高清在线一区| 波多野结衣精品在线| 久久久久久久久久久久久久一区| 亚洲一区二区精品在线| 日韩一区二区三区电影在线观看 | 日韩视频免费观看高清完整版在线观看 | 日韩视频精品| 欧美人狂配大交3d怪物一区| 国产清纯美女被跳蛋高潮一区二区久久w | 高清视频一区二区三区| 欧美不卡三区| 91麻豆精品91久久久久久清纯| 国产亚洲一区二区三区四区| 亚洲网友自拍偷拍| 国产91精品欧美| 精品久久久久久一区二区里番| 欧美亚洲动漫精品| 国产精品欧美一区二区三区| 日韩不卡在线观看日韩不卡视频| 99re在线精品| 91福利在线观看| 国产精品久久久爽爽爽麻豆色哟哟 | 国产日韩精品一区二区浪潮av| 午夜视频一区二区三区| 波多野结衣视频一区| 一区二区不卡在线观看| 国产亚洲精品资源在线26u| 日本不卡中文字幕| 国产精品久久亚洲| 欧美丰满美乳xxx高潮www| 一区二区三区日韩在线观看| va亚洲va日韩不卡在线观看| 色噜噜偷拍精品综合在线| 中文在线一区二区 | 精一区二区三区| 久久精品国产综合精品| 欧美一级免费观看| 亚洲18色成人| 国产一区二区高清不卡| 欧美一级淫片007| 天天av天天翘天天综合网| 国产精品久久亚洲| 日韩一区二区三区视频在线| 五月婷婷激情综合网| 国产无套精品一区二区| 欧美zozozo| 精品一区二区日韩| 五月婷婷综合色| 国产精品色婷婷| 成人av集中营| 91精品国产入口在线| 免费成人美女在线观看.| 日韩一区二区三区高清| 成人欧美一区二区三区在线播放| jlzzjlzz亚洲日本少妇| 91精品国产入口在线| 精品一区二区精品| 色综合久久中文字幕| 一区二区三区影院| 久久久久久精| 欧美国产一区在线| 91在线播放视频| 亚洲精品在线三区| 不卡的看片网站| 精品嫩草影院久久| gogo大胆日本视频一区| 欧美va天堂va视频va在线| 丁香桃色午夜亚洲一区二区三区| 欧美日韩卡一卡二| 精品一区二区三区免费视频| 欧美午夜寂寞影院| 黄色资源网久久资源365| 7777精品伊人久久久大香线蕉完整版| 全部av―极品视觉盛宴亚洲| 色婷婷一区二区| 美女精品一区二区| 欧美日韩1区2区| 国产成都精品91一区二区三| 欧美一区二区在线不卡| 成人av电影在线网| 久久精品亚洲精品国产欧美kt∨ | 伊人久久大香线蕉午夜av| 五月综合激情网| 在线综合视频网站| 日韩精品成人一区二区三区| 在线观看亚洲视频啊啊啊啊| 男女视频一区二区| 8x8x8国产精品| caoporen国产精品视频| 中文在线资源观看网站视频免费不卡| 好吊色欧美一区二区三区视频| 国产精品对白交换视频 | 一区二区三区我不卡| 免费人成在线不卡| 91精品国产手机| 91九色在线观看| 最新久久zyz资源站| 亚洲精品久久久久久一区二区| 首页国产欧美日韩丝袜| 欧美日韩一区二区不卡| eeuss鲁片一区二区三区在线观看| 久久久精品一品道一区| 农村寡妇一区二区三区| 日韩在线播放一区二区| 91精品国产一区二区| 97欧洲一区二区精品免费| 亚洲男人的天堂网| 欧美在线不卡视频| 91天堂素人约啪| 亚洲一区二区三区四区不卡| 欧美亚洲国产一卡| 3d动漫精品啪啪一区二区三区免费| 亚洲欧美日韩综合aⅴ视频| 综合久久国产| 99精品国产视频| 亚洲国产综合人成综合网站| 欧美日韩在线不卡| 9a蜜桃久久久久久免费| 日韩精品高清不卡| 久久丝袜美腿综合| 色播五月综合| 波波电影院一区二区三区| 亚洲美女免费在线| 欧美一区二区在线免费观看| 精品麻豆av| 精品综合久久久久久8888| 国产精品色在线| 欧美日韩一区久久| 久久99蜜桃综合影院免费观看| 蜜桃av一区二区在线观看| 国产亚洲精品aa午夜观看| 亚洲欧美日韩国产yyy| 99麻豆久久久国产精品免费优播| 亚洲精品乱码久久久久久 | 国产精品免费视频一区| 色噜噜狠狠成人网p站| 91蜜桃在线免费视频| 肉色丝袜一区二区| 久久久99久久| 在线观看亚洲一区| 国产一区二区三区色淫影院| 国产在线精品免费| 一区二区三区国产| 久久嫩草精品久久久久| 在线观看成人免费视频| 久久综合九色欧美狠狠| 成人精品视频一区| 日本va欧美va瓶| 亚洲乱码精品一二三四区日韩在线| 日韩区在线观看| 91久久精品一区二区二区| 国产视频一区二区不卡| 国产a视频精品免费观看| 亚洲高清免费视频| 欧美经典三级视频一区二区三区| 欧美日韩一区中文字幕| 亚洲成人自拍| 久久久久资源| 91成人理论电影| 国产老肥熟一区二区三区| 亚洲va在线va天堂| 自拍偷自拍亚洲精品播放| 精品免费视频一区二区| 欧洲国内综合视频| 日本午夜精品电影| 国产精品区一区二区三含羞草| 国产精品一二三在| 秋霞午夜av一区二区三区| 一区二区高清在线| 国产精品高潮呻吟久久| 国产性做久久久久久| 欧美大片在线观看| 欧美福利一区二区| 欧美性xxxxxx少妇| 色婷婷av一区二区三区gif|