三级一区在线视频先锋_丁香另类激情小说_中文字幕一区二区三_一本一道久久a久久精品综合蜜臀_一区二区三区四区国产精品_日韩**一区毛片_在线观看日韩电影_1000部国产精品成人观看_免费不卡在线视频_亚洲国产日日夜夜_国产亚洲精品福利_亚洲精品一区二区三区在线观看_欧美美女一区二区三区_日韩欧美色电影_欧美aaa在线_久久这里只有精品6

讀書月攻略拿走直接抄!
歡迎光臨中圖網(wǎng) 請 | 注冊
> >
PYTORCH計算機(jī)視覺實(shí)戰(zhàn):目標(biāo)檢測、圖像處理與深度學(xué)習(xí)

包郵 PYTORCH計算機(jī)視覺實(shí)戰(zhàn):目標(biāo)檢測、圖像處理與深度學(xué)習(xí)

出版社:機(jī)械工業(yè)出版社出版時間:2023-09-01
開本: 16開 頁數(shù): 558
中 圖 價:¥102.8(6.9折) 定價  ¥149.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

PYTORCH計算機(jī)視覺實(shí)戰(zhàn):目標(biāo)檢測、圖像處理與深度學(xué)習(xí) 版權(quán)信息

PYTORCH計算機(jī)視覺實(shí)戰(zhàn):目標(biāo)檢測、圖像處理與深度學(xué)習(xí) 本書特色

深度學(xué)習(xí)是近年來計算機(jī)視覺應(yīng)用在多個方面取得進(jìn)步的驅(qū)動力。本書以實(shí)踐為驅(qū)動,結(jié)合具體應(yīng)用場景,基于真實(shí)數(shù)據(jù)集全面系統(tǒng)地介紹如何使用PyTorch解決50多個計算機(jī)視覺問題。 首先,你將學(xué)習(xí)使用NumPy和PyTorch從頭開始構(gòu)建神經(jīng)網(wǎng)絡(luò)(NN),并了解調(diào)整神經(jīng)網(wǎng)絡(luò)超參數(shù)的*佳實(shí)踐。然后,你將學(xué)習(xí)如何使用卷積神經(jīng)網(wǎng)絡(luò)(CNN)和遷移學(xué)習(xí)完成圖像分類任務(wù),并且理解其中的工作原理。隨后,你將學(xué)習(xí)二維和三維多目標(biāo)檢測、圖像分割、人體姿態(tài)估計等多個實(shí)際任務(wù),并使用R-CNN、Fast R-CNN、Faster R-CNN、SSD、YOLO、U-Net、Mask R-CNN、Detectron2等框架實(shí)現(xiàn)這些任務(wù)。在自編碼器和GAN部分,本書將指導(dǎo)你學(xué)習(xí)面部表情替換、面部圖像生成和面部表情處理技術(shù)。之后,你將學(xué)習(xí)如何將計算機(jī)視覺與NLP技術(shù)(LSTM、transformer等)和強(qiáng)化學(xué)習(xí)技術(shù)(深度Q學(xué)習(xí)等)相結(jié)合,實(shí)現(xiàn)OCR、圖像標(biāo)題生成、目標(biāo)檢測和汽車自動駕駛智能體等應(yīng)用。*后,你將學(xué)習(xí)如何將神經(jīng)網(wǎng)絡(luò)模型部署到AWS云等實(shí)際應(yīng)用場景。

PYTORCH計算機(jī)視覺實(shí)戰(zhàn):目標(biāo)檢測、圖像處理與深度學(xué)習(xí) 內(nèi)容簡介

本書基于真實(shí)數(shù)據(jù)集,全面系統(tǒng)地闡述現(xiàn)代計算機(jī)視覺實(shí)用技術(shù)、方法和實(shí)踐,涵蓋50多個計算機(jī)視覺問題。全書分為四部分:di一部分(第1~3章)介紹神經(jīng)網(wǎng)絡(luò)和PyTorch的基礎(chǔ)知識,以及如何使用PyTorch構(gòu)建并訓(xùn)練神經(jīng)網(wǎng)絡(luò),包括輸入數(shù)據(jù)縮放、批歸一化、超參數(shù)調(diào)整等;第二部分(第4~10章)介紹如何使用卷積神經(jīng)網(wǎng)絡(luò)、遷移學(xué)習(xí)等技術(shù)解決更復(fù)雜的視覺相關(guān)問題,包括圖像分類、目標(biāo)檢測和圖像分割等;第三部分(第11~13章)介紹各種圖像處理技術(shù),包括自編碼器模型和各種類型的GAN模型;第四部分(第14~18章)探討將計算機(jī)視覺技術(shù)與NLP、強(qiáng)化學(xué)習(xí)和OpenCV等技術(shù)相結(jié)合來解決傳統(tǒng)問題的新方法。本書內(nèi)容豐富新穎,語言文字表述清晰,應(yīng)用實(shí)例講解詳細(xì),圖例直觀形象,適合PyTorch初中級讀者及計算機(jī)視覺相關(guān)技術(shù)人員閱讀。

PYTORCH計算機(jī)視覺實(shí)戰(zhàn):目標(biāo)檢測、圖像處理與深度學(xué)習(xí) 目錄

CONTENTS
目  錄
譯者序
前言
**部分 面向計算機(jī)視覺的
深度學(xué)習(xí)基礎(chǔ)知識
第1章 人工神經(jīng)網(wǎng)絡(luò)基礎(chǔ) 2
1.1 比較人工智能與傳統(tǒng)機(jī)器學(xué)習(xí) 3
1.2 人工神經(jīng)網(wǎng)絡(luò)的構(gòu)建模塊 4
1.3 實(shí)現(xiàn)前向傳播 6
1.3.1 計算隱藏層的值 6
1.3.2 應(yīng)用激活函數(shù) 7
1.3.3 計算輸出層的值 9
1.3.4 計算損失值 9
1.3.5 前向傳播的代碼 11
1.4 實(shí)現(xiàn)反向傳播 14
1.4.1 梯度下降的代碼 15
1.4.2 使用鏈?zhǔn)椒▌t實(shí)現(xiàn)
反向傳播 17
1.5 整合前向傳播與反向傳播 20
1.6 理解學(xué)習(xí)率的影響 22
1.7 總結(jié)神經(jīng)網(wǎng)絡(luò)的訓(xùn)練過程 28
1.8 小結(jié) 29
1.9 課后習(xí)題 29
第2章 PyTorch基礎(chǔ) 30
2.1 安裝PyTorch 30
2.2 PyTorch張量 32
2.2.1 初始化張量 33
2.2.2 張量運(yùn)算 34
2.2.3 張量對象的自動梯度 37
2.2.4 PyTorch的張量較
NumPy的ndarrays
的優(yōu)勢 38
2.3 使用PyTorch構(gòu)建神經(jīng)網(wǎng)絡(luò) 39
2.3.1 數(shù)據(jù)集、數(shù)據(jù)加載器和
批大小 45
2.3.2 預(yù)測新的數(shù)據(jù)點(diǎn) 48
2.3.3 實(shí)現(xiàn)自定義損失函數(shù) 49
2.3.4 獲取中間層的值 50
2.4 使用序貫方法構(gòu)建神經(jīng)網(wǎng)絡(luò) 51
2.5 保存并加載PyTorch模型 54
2.5.1 state dict 54
2.5.2 保存 55
2.5.3 加載 55
2.6 小結(jié) 55
2.7 課后習(xí)題 56
第3章 使用PyTorch構(gòu)建深度
神經(jīng)網(wǎng)絡(luò) 57
3.1 表示圖像 57
3.2 為什么要使用神經(jīng)網(wǎng)絡(luò)進(jìn)行
圖像分析 62
3.3 為圖像分類準(zhǔn)備數(shù)據(jù) 64
3.4 訓(xùn)練神經(jīng)網(wǎng)絡(luò) 66
3.5 縮放數(shù)據(jù)集以提升模型準(zhǔn)確度 71
3.6 理解不同批大小的影響 74
3.6.1 批大小為32 75
3.6.2 批大小為10 000 79
3.7 理解不同損失優(yōu)化器的影響 80
3.8 理解不同學(xué)習(xí)率的影響 83
3.8.1 學(xué)習(xí)率對縮放數(shù)據(jù)集
的影響 83
3.8.2 不同學(xué)習(xí)率對非縮放
數(shù)據(jù)集的影響 88
3.9 理解不同學(xué)習(xí)率衰減的影響 90
3.10 構(gòu)建更深的神經(jīng)網(wǎng)絡(luò) 93
3.11 理解不同批歸一化的影響 94
3.11.1 沒有批歸一化的非常小
的輸入值 96
3.11.2 經(jīng)過批歸一化的非常小
的輸入值 98
3.12 過擬合的概念 100
3.12.1 添加dropout的影響 100
3.12.2 正則化的影響 102
3.13 小結(jié) 106
3.14 課后習(xí)題 106
第二部分 物體分類與目標(biāo)檢測
第4章 卷積神經(jīng)網(wǎng)絡(luò) 108
4.1 傳統(tǒng)深度神經(jīng)網(wǎng)絡(luò)的問題 108
4.2 CNN的構(gòu)建模塊 111
4.2.1 卷積 112
4.2.2 濾波器 113
4.2.3 步長和填充 114
4.2.4 池化 115
4.2.5 整合各個構(gòu)建模塊 116
4.2.6 卷積和池化的圖像平移
不變性原理 117
4.3 實(shí)現(xiàn)CNN 117
4.3.1 使用PyTorch構(gòu)建基于
CNN的架構(gòu) 118
4.3.2 基于Python的前向傳播 121
4.4 使用深度CNN分類圖像 123
4.5 實(shí)現(xiàn)數(shù)據(jù)增強(qiáng) 127
4.5.1 圖像增強(qiáng) 127
4.5.2 對一批圖像執(zhí)行數(shù)據(jù)增強(qiáng)
及collate_fn的必要性 137
4.5.3 用于圖像平移的數(shù)據(jù)
增強(qiáng) 140
4.6 特征學(xué)習(xí)結(jié)果的可視化 143
4.7 構(gòu)建對真實(shí)圖像進(jìn)行分類
的CNN 153
4.8 小結(jié) 161
4.9 課后習(xí)題 162
第5章 面向圖像分類的遷移學(xué)習(xí) 163
5.1 遷移學(xué)習(xí)簡介 163
5.2 理解VGG16架構(gòu) 164
5.3 理解ResNet架構(gòu) 174
5.4 實(shí)現(xiàn)人臉關(guān)鍵點(diǎn)檢測 178
5.5 多任務(wù)學(xué)習(xí)—實(shí)現(xiàn)年齡估計
和性別分類 186
5.6 torch_snippets庫簡介 195
5.7 小結(jié) 200
5.8 課后習(xí)題 200
第6章 圖像分類的實(shí)戰(zhàn)技術(shù) 201
6.1 生成CAM 201
6.2 數(shù)據(jù)增強(qiáng)和批歸一化 207
6.3 模型實(shí)現(xiàn)的實(shí)踐要點(diǎn) 212
6.3.1 處理不平衡數(shù)據(jù) 212
6.3.2 分類圖像中目標(biāo)的大小 213
6.3.3 訓(xùn)練數(shù)據(jù)和驗證數(shù)據(jù)
之間的差異 213
6.3.4 扁平層中的節(jié)點(diǎn)數(shù) 214
6.3.5 圖像的大小 214
6.3.6 使用OpenCV實(shí)用程序 214
6.4 小結(jié) 215
6.5 課后習(xí)題 215
第7章 目標(biāo)檢測基礎(chǔ) 216
7.1 目標(biāo)檢測簡介 216
7.2 為訓(xùn)練圖像樣本創(chuàng)建真值 217
7.3 理解區(qū)域建議 220
7.3.1 使用SelectiveSearch
生成區(qū)域建議 221
7.3.2 實(shí)現(xiàn)用于生成區(qū)域建議
的SelectiveSearch 222
7.4 理解IoU 224
7.5 非極大抑制 226
7.6 mAP 226
7.7 訓(xùn)練基于R-CNN的定制目標(biāo)
檢測器 227
7.7.1 R-CNN的工作細(xì)節(jié) 227
7.7.2 基于定制數(shù)據(jù)集實(shí)現(xiàn)
R-CNN目標(biāo)檢測模型 228
7.8 訓(xùn)練基于Fast R-CNN的定制
目標(biāo)檢測器 241
7.8.1 Fast R-CNN的工作細(xì)節(jié) 242
7.8.2 基于定制數(shù)據(jù)集實(shí)現(xiàn)Fast R-CNN目標(biāo)檢測模型 242
7.9 小結(jié) 249
7.10 課后習(xí)題 249
第8章 目標(biāo)檢測進(jìn)階 250
8.1 現(xiàn)代目標(biāo)檢測算法的組成 250
8.1.1 錨盒 250
8.1.2 區(qū)域建議網(wǎng)絡(luò) 252
8.2 基于定制數(shù)據(jù)集訓(xùn)練Faster
R-CNN 254
8.3 YOLO的工作細(xì)節(jié) 260
8.4 基于定制數(shù)據(jù)集訓(xùn)練YOLO 265
8.4.1 安裝Darknet 265
8.4.2 設(shè)置數(shù)據(jù)集格式 267
8.4.3 配置架構(gòu) 268
8.4.4 訓(xùn)練和測試模型 269
8.5 SSD模型的工作細(xì)節(jié) 270
8.6 基于定制數(shù)據(jù)集訓(xùn)練SSD
模型 274
8.7 小結(jié) 278
8.8 課后習(xí)題 278
第9章 圖像分割 279
9.1 探索U-Net架構(gòu) 279
9.2 使用U-Net實(shí)現(xiàn)語義分割 283
9.3 探索Mask R-CNN架構(gòu) 288
9.3.1 RoI對齊 290
9.3.2 掩碼頭部 291
9.4 使用Mask R-CNN實(shí)現(xiàn)實(shí)例
分割 292
9.5 小結(jié) 305
9.6 課后習(xí)題 306
第10章 目標(biāo)檢測與分割的應(yīng)用 307
10.1 多目標(biāo)實(shí)例分割 307
10.1.1 獲取和準(zhǔn)備數(shù)據(jù) 308
10.1.2 訓(xùn)練用于實(shí)例分割的
模型 312
10.1.3 對新圖像進(jìn)行推斷 313
10.2 人體姿態(tài)檢測 315
10.3 人群計數(shù) 316
10.4 圖像著色 325
10.5 面向點(diǎn)云的三維目標(biāo)檢測 330
10.5.1 理論 330
10.5.2 訓(xùn)練YOLO模型實(shí)現(xiàn)
三維目標(biāo)檢測 334
10.6 小結(jié) 337
第三部分 圖像處理
第11章 自編碼器與圖像處理 340
11.1 理解自編碼器 340
11.2 理解卷積自編碼器 346
11.3 理解變分自編碼器 351
11.3.1 VAE的工作機(jī)制 352
11.3.2 KL散度 353
11.3.3 構(gòu)建VAE模型 353
11.4 圖像對抗性攻擊 357
11.5 圖像風(fēng)格遷移 360
11.6 生成深度虛擬圖像 366
11.7 小結(jié) 375
11.8 課后習(xí)題 375
第12章 基于GAN的圖像生成 376
12.1 GAN模型簡介 376
12.2 使用GAN生成手寫數(shù)字 378
12.3 使用DCGAN生成人臉圖像 383
12.4 實(shí)現(xiàn)條件GAN模型 391
12.5 小結(jié) 399
12.6 課后習(xí)題 400
第13章 高級GAN圖像處理 401
13.1 使用Pix2Pix GAN模型 401
13.2 使用CycleGAN模型 410
13.3 在定制圖像上使用StyleGAN
模型 418
13.4 超分辨率GAN 426
13.4.1 架構(gòu) 427
13.4.2 編碼SRGAN 428
13.5 小結(jié) 429
13.6 課后習(xí)題 430
第四部分 計算機(jī)視覺與其他技術(shù)
第14章 使用小樣本進(jìn)行模型訓(xùn)練 432
14.1 實(shí)現(xiàn)零樣本學(xué)習(xí) 432
14.2 實(shí)現(xiàn)小樣本學(xué)習(xí) 437
14.2.1 構(gòu)建Siamese網(wǎng)絡(luò) 438
14.2.2 原型網(wǎng)絡(luò)的工作細(xì)節(jié) 444
14.2.3 關(guān)系網(wǎng)絡(luò)的工作細(xì)節(jié) 445
14.3 小結(jié) 446
14.4 課后習(xí)題 446
第15章 計算機(jī)視覺與NLP 447
15.1 RNN模型簡介 447
15.1.1 RNN架構(gòu)的應(yīng)用場景 448
15.1.2 探索RNN的結(jié)構(gòu) 449
15.1.3 為什么需要存儲記憶 449
15.2 LSTM架構(gòu)簡介 450
15.2.1 LSTM的工作細(xì)節(jié) 451
15.2.2 使用PyTorch實(shí)現(xiàn)
LSTM 453
15.3 生成圖像標(biāo)題 453
15.4 轉(zhuǎn)錄手寫圖像 465
15.4.1 CTC損失的工作細(xì)節(jié) 466
15.4.2 計算CTC損失值 467
15.4.3 手寫轉(zhuǎn)錄的代碼實(shí)現(xiàn) 468
15.5 使用DETR進(jìn)行目標(biāo)檢測 476
15.5.1 transformer的工作細(xì)節(jié) 476
15.5.2 DETR的工作細(xì)節(jié) 479
15.5.3 目標(biāo)檢測的代碼實(shí)現(xiàn) 482
15.6 小結(jié) 485
15.7 課后習(xí)題 485
第16章 計算機(jī)視覺與強(qiáng)化學(xué)習(xí) 486
16.1 強(qiáng)化學(xué)習(xí)基礎(chǔ)知識 486
16.1.1 計算狀態(tài)價值 487
16.1.2 計算狀態(tài)–行為價值 488
16.2 實(shí)現(xiàn)Q學(xué)習(xí) 489
16.2.1 Q值 489
16.2.2 了解Gym環(huán)境 490
16.2.3 構(gòu)建Q表 491
16.2.4 探索–利用機(jī)制 493
16.3 實(shí)現(xiàn)深度Q學(xué)習(xí) 495
16.4 目標(biāo)固定的深度Q學(xué)習(xí) 501
16.5 實(shí)現(xiàn)自動駕駛智能體 508
16.5.1 安裝CARLA環(huán)境 508
16.5.2 訓(xùn)練自動駕駛智能體 511
16.6 小結(jié) 518
16.7 課后習(xí)題 519
第17章 模型的實(shí)際應(yīng)用部署 520
17.1 API基礎(chǔ)知識 520
17.2 在本地服務(wù)器上創(chuàng)建API并
進(jìn)行預(yù)測 521
17.2.1 安裝API模塊和依賴項 522
17.2.2 圖像分類器的支持組件 522
17.3 將API部署到云端 525
17.3.1 Docker鏡像與Docker
容器 526
17.3.2 創(chuàng)建Docker容器 526
17.3.3 在云端發(fā)布并運(yùn)行
Docker容器 530
17.4 小結(jié) 535
第18章 使用OpenCV實(shí)用程序
進(jìn)行圖像分析 536
18.1 圖像中的單詞檢測 536
18.2 圖像中的車道線檢測 542
18.3 基于顏色的目標(biāo)檢測 544
18.4 構(gòu)建全景圖像 546
18.5 圖像中的車牌檢測 550
18.6 小結(jié) 552
附錄 課后習(xí)題答案 554
展開全部
商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網(wǎng)
在線客服
三级一区在线视频先锋_丁香另类激情小说_中文字幕一区二区三_一本一道久久a久久精品综合蜜臀_一区二区三区四区国产精品_日韩**一区毛片_在线观看日韩电影_1000部国产精品成人观看_免费不卡在线视频_亚洲国产日日夜夜_国产亚洲精品福利_亚洲精品一区二区三区在线观看_欧美美女一区二区三区_日韩欧美色电影_欧美aaa在线_久久这里只有精品6
亚洲国产精品久久久久婷婷884| 亚洲另类在线视频| 成人欧美一区二区三区视频xxx| 蜜桃精品视频在线| 亚洲在线中文字幕| 亚洲老妇xxxxxx| 《视频一区视频二区| 国产精品系列在线| 日韩一区在线播放| 亚洲精品自拍动漫在线| 亚洲欧洲色图综合| 亚洲精品久久7777| 午夜精品久久久久久久| 久久精品噜噜噜成人av农村| 精品一区二区三区在线播放视频| 狠狠色丁香婷综合久久| 成人黄页在线观看| 国产伦精品一区二区| 免费看污久久久| 亚洲乱码国产乱码精品天美传媒| 日本丶国产丶欧美色综合| 欧美福利一区二区| 久久综合色8888| 国产精品久久久久久福利一牛影视| 精品国产亚洲在线| 久久久久国产精品麻豆ai换脸 | 91亚洲大成网污www| av成人午夜| av在线不卡观看| 欧美二区在线看| 一区二区三区我不卡| 在线观看视频91| 7777女厕盗摄久久久| 亚洲精品在线观| 久久久精品欧美丰满| 亚洲免费在线观看视频| 国产精品丝袜一区| 久久久久久久久久久电影| 欧美日韩国产免费| 国产欧美精品一区二区色综合朱莉| 久久免费视频色| 国产精品国产三级国产aⅴ无密码| 国产精品视频第一区| 中文字幕在线观看不卡| 一区二区三区四区中文字幕| 亚洲一区二区精品视频| 日本亚洲视频在线| 国内精品自线一区二区三区视频| 国产69精品一区二区亚洲孕妇| 久久99九九99精品| 懂色av一区二区三区蜜臀| 国产精品一线二线三线| 久久久久高清| 色综合久久中文综合久久97| 欧美精品 国产精品| 国产午夜精品美女毛片视频| 亚洲欧美在线视频| 午夜电影久久久| 国产乱子伦视频一区二区三区 | 久久精品久久精品| 国产成人av资源| 国产丝袜不卡| 一级日韩一区在线观看| 欧美日韩精品系列| 国产亚洲欧洲一区高清在线观看| 一区二区三区四区高清精品免费观看| 免费成人你懂的| 99久热re在线精品视频| 中文字幕一区二区三区在线乱码| 日本黄色一区二区| 欧美一级欧美一级在线播放| 国产精品第13页| 男女激情视频一区| av不卡在线播放| 欧美日韩一区在线观看视频| 91国产成人在线| 国产亚洲成年网址在线观看| 亚洲一级二级三级| 国产福利精品一区二区| 欧美视频小说| 日韩一区二区三区高清免费看看| 亚洲乱码国产乱码精品精可以看| 国内国产精品久久| 欧美三级电影在线播放| 欧美一级日韩一级| 亚洲一区二区三区自拍| 99久久婷婷国产| 一区二区三区电影| 国产欧美一区二区精品久导航 | 久久精品成人一区二区三区蜜臀| 色成年激情久久综合| 亚洲国产精品成人综合| 男女性色大片免费观看一区二区| 91久久精品国产91久久性色tv| 日本道免费精品一区二区三区| 国产精品无码永久免费888| 久久精品国产在热久久| 国产一区二区三区免费不卡| 5月丁香婷婷综合| 亚洲影院理伦片| 国产欧美亚洲日本| 欧美一级搡bbbb搡bbbb| 亚洲国产精品一区二区尤物区| 99在线热播精品免费| 91福利视频久久久久| 国产精品国产三级国产a| 日本不卡视频在线观看| 视频在线一区二区三区| 中文文精品字幕一区二区| 国产精品18久久久久久vr| 日韩在线三区| 中文字幕欧美三区| av一区二区久久| 欧美日本一区二区三区| 午夜精品久久久久久久久久久| 九九九九九精品| 国产欧美久久久精品影院| 高清不卡在线观看| 欧美日韩另类一区| 蜜臀av一区二区在线免费观看 | 亚洲成在人线免费| 久热国产精品视频一区二区三区| 日本一区二区三区国色天香| av一区二区三区在线| 日韩欧美自拍偷拍| 黄色日韩三级电影| 精品视频色一区| 蜜臀久久久99精品久久久久久| 日韩亚洲视频| 亚洲另类色综合网站| 狠狠色综合一区二区| 欧美国产禁国产网站cc| av亚洲精华国产精华| 日韩欧美中文字幕制服| 国产mv日韩mv欧美| 欧美人体做爰大胆视频| 激情欧美一区二区| 欧美体内she精视频| 精品在线免费观看| 欧美性色黄大片| 日韩电影免费一区| 在线精品国精品国产尤物884a| 日韩av成人高清| 91久久久免费一区二区| 日韩精品亚洲一区二区三区免费| 一个色的综合| 一区二区欧美在线观看| 在线亚洲免费视频| 国内精品国产三级国产a久久| 欧美日韩一区不卡| 国产福利91精品一区二区三区| 欧美人体做爰大胆视频| 亚洲6080在线| 欧美精品一区二区视频| 亚洲一级二级在线| 91久久精品一区二区| 久久成人av少妇免费| 91精品国产综合久久精品app| 成人伦理片在线| 久久久久国产精品人| 国产精品日韩一区二区| 亚洲一区二区三区四区在线观看| 一本久道久久综合| 日韩制服丝袜先锋影音| 欧美日韩国产综合一区二区三区| 国产精品白丝jk黑袜喷水| 久久久久久久免费视频了| 国产激情美女久久久久久吹潮| 一区二区三区四区在线播放| 色哟哟在线观看一区二区三区| 国内久久精品视频| 国产区在线观看成人精品| 日韩一区不卡| 国产一区二区三区在线观看精品| 欧美亚洲高清一区| 99国产精品久久久| 亚洲蜜臀av乱码久久精品| 91国产成人在线| 3d精品h动漫啪啪一区二区| 亚洲黄一区二区三区| 91精品久久久久久久99蜜桃| 国产精品亚洲一区| 亚洲精品欧美在线| 欧美日韩一区二区三区四区| 97免费资源站| 日韩中文字幕亚洲一区二区va在线| 欧美一级在线免费| 欧美韩国日本精品一区二区三区| 日韩av电影免费观看高清完整版| 亚洲精品在线观看视频| 日韩欧美一区二区视频在线播放| 国产91综合网| 国产精品私人影院| 欧美性极品少妇| 蜜桃传媒视频第一区入口在线看| 亚洲h在线观看| 精品国产91九色蝌蚪| 婷婷亚洲婷婷综合色香五月| 91热门视频在线观看| 91精品国产欧美一区二区成人|