国产第1页_91在线亚洲_中文字幕成人_99久久久久久_五月宗合网_久久久久国产一区二区三区四区

讀書月攻略拿走直接抄!
歡迎光臨中圖網 請 | 注冊
> >
機器學習統計學-(影印版)

包郵 機器學習統計學-(影印版)

出版社:東南大學出版社出版時間:2018-08-01
開本: 16開 頁數: 426
中 圖 價:¥73.5(7.5折) 定價  ¥98.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

機器學習統計學-(影印版) 版權信息

  • ISBN:9787564177553
  • 條形碼:9787564177553 ; 978-7-5641-7755-3
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

機器學習統計學-(影印版) 本書特色

機器學習所涉及的復雜統計學知識困擾了很多開 發者。知曉統計學知識可以幫助你為給定的問題構建 強壯的機器學習優化模型。
普拉塔普·丹格迪著的《機器學習統計學(影印 版)(英文版)》將教你機器學習所需的實現復雜統計 計算的相關內容,可以從中獲得監督學習、無監督學 習、強化學習等背后的統計學知識。你將看到討論機 器學習相關統計學內容的真實案例并熟悉它們。還能 學到用于實現建模、調參、回歸、分類、密度采集、 向量處理、矩陣等的相關程序。
學完本書,你會掌握機器學習所需的統計學知識 。并且能夠將所學新技能應用于任何行業問題。

機器學習統計學-(影印版) 內容簡介

本書將教你機器學習所需的實現復雜統計計算的相關內容,可以從中獲得監督學習、無監督學習、強化學習等背后的統計學知識。你將看到真實的案例,討論機器學習相關統計學內容,并讓你熟悉它們。還能學到用于實現建模、調參、回歸、分類、密度采集、處理向量、矩陣等的相關程序。學完本書,你會掌握機器學習所需的統計學知識,并且能夠將所學新技能應用于任何行業問題。

機器學習統計學-(影印版) 目錄

Preface
Chapter 1: Journey from Statistics to Machine Learning
Statistical terminology for model building and validation
Machine learning
Major differences between statistical modeling and machine learning
Steps in machine learning model development and deployment
Statistical fundamentals and terminology for model building andvalidation
Bias versus variance trade-off
Train and test data
Machine learning terminology for model building and validation
Linear regression versus gradient descent
Machine learning losses
When to stop tuning machine learning models
Train, validation, and test data
Cross-validation
Grid search
Machine learning model overview
Summary
Chapter 2: Parallelism of Statistics and Machine Learning
Comparison between regression and machine learning models
Compensating factors in machine learning models
Assumptions of linear regression
Steps applied in linear regression modeling
Example of simple linear regression from first principles
Example of simple linear regression using the wine quality data
Example of multilinear regression - step-by-step methodology of model
building
Backward and forward selection
Machine learning models - ridge and lasso regression
Example of ridge regression machine learning
Example of lasso regression machine learning model
Regularization parameters in linear regression and ridge/lasso regression
Summary
Chapter 3: Logistic Regression Versus Random Forest
Maximum likelihood estimation
Logistic regression - introduction and advantages
Terminology involved in logistic regression
Applying steps in logistic regression modeling
Example of logistic regression using German credit data
Random forest
Example of random forest using German credit data
Grid search on random forest
Variable importance plot
Comparison of logistic regression with random forest
Summary
Chapter 4: Tree-Based Machine Learning Models
Introducing decision tree classifiers
Terminology used in decision trees
Decision tree working methodology from first principles
Comparison between logistic regression and decision trees
Comparison of error components across various styles of models
Remedial actions to push the model towards the ideal region
HR attrition data example
Decision tree classifier
Tuning class weights in decision tree classifier
Bagging classifier
Random forest classifier
Random forest classifier - grid search
AdaBoost classifier
Gradient boosting classifier
Comparison between AdaBoosting versus gradient boosting
Extreme gradient boosting - XGBoost classifier
Ensemble of ensembles - model stacking
Ensemble of ensembles with different types of classifiers
Ensemble of ensembles with bootstrap samples using a single type of
classifier
Summary
Chapter 5: K-Nearest Neighbors and Naive Bayes
K-nearest neighbors
KNN voter example
Curse of dimensionality
Curse of dimensionality with 1D, 2D, and 3D example
KNN classifier with breast cancer Wisconsin data example
Tuning of k-value in KNN classifier
Naive Bayes
Probability fundamentals
Joint probability
Understanding Bayes theorem with conditional probability
Naive Bayes classification
Laplace estimator
Naive Bayes SMS spam classification example
Summary
Chapter 6: Support Vector Machines and Neural Networks
Support vector machines working principles
Maximum margin classifier
Support vector classifier
Support vector machines
Kernel functions
SVM multilabel classifier with letter recognition data example
Maximum margin classifier - linear kernel
Polynomial kernel
RBF kernel
Artificial neural networks -ANN
Activation functions
Forward propagation and backpropagation
Optimization of neural networks
Stochastic gradient descent - SGD
Momentum
Nesterov accelerated gradient - NAG
Adagrad
Adadelta
RMSprop
Adaptive moment estimation - Adam
Limited-memory broyden-fletcher-goldfarb-shanno - L-BFGS
optimization algorithm
Dropout in neural networks
ANN classifier applied on handwritten digits using scikit-learn
Introduction to deep learning
Solving methodology
Deep learning software
Deep neural network classifier applied on handwritten digits using Keras
Summary
Chapter 7: Recommendation Engines
Content-based filtering
Cosine similarity
Collaborative filtering
Advantages of collaborative filtering over content-based filtering
Matrix factorization using the alternating least squares algorithm for
collaborative filtering
Evaluation of recommendation engine model
Hyperparameter selection in recommendation engines using grid search
Recommendation engine application on movie lens data
User-user similarity matrix
Movie-movie similarity matrix
Collaborative filtering using ALS
Grid search on collaborative filtering
Summary
Chapter 8: Unsupervised Learning
K-means clustering
K-means working methodology from first principles
Optimal number of clusters and cluster evaluation
The elbow method
K-means clustering with the iris data example
Principal component analysis - PCA
PCA working methodology from first principles
PCA applied on handwritten digits using scikit-learn
Singular value decomposition - SVD
SVD applied on handwritten digits using scikit-learn
Deep auto encoders
Model building technique using encoder-decoder architecture
Deep auto encoders applied on handwritten digits using Keras
Summary
Chapter 9: Reinforcement Learning
Introduction to reinforcement learning
Comparing supervised, unsupervised, and reinforcement learning in detail
Characteristics of reinforcement learning
Reinforcement learning basics
Category 1 - value based
Category 2 - policy based
Category 3 - actor-critic
Category 4 - model-free
Category 5 - model-based
Fundamental categories in sequential decision making
Markov decision processes and Bellman equations
Dynamic programming
Algorithms to compute optimal policy using dynamic programming
Grid world example using value and policy iteration algorithms with basic Python
Monte Carlo methods
Comparison between dynamic programming and Monte Carlo methods
Key advantages of MC over DP methods
Monte Carlo prediction
The suitability of Monte Carlo prediction on grid-world problems
Modeling Blackjack example of Monte Carlo methods using Python
Temporal difference learning
Comparison between Monte Carlo methods and temporal difference
learning
TD prediction
Driving office example for TD learning
SARSA on-policy TD control
Q-learning - off-policy TD control
Cliff walking example of on-policy and off-policy of TD control
Applications of reinforcement learning with integration of machine
learning and deep learning
Automotive vehicle control - self-driving cars
Google DeepMind's AlphaGo
Robo soccer
Further reading
Summary
Index
展開全部
商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 欧美播播| 人妻丰满av无码中文字幕 | 精品人妻潮喷久久久又裸又黄 | 国产精品久久久久一区二区三区 | 国产一级特黄aa毛片 | 在线免费观看毛片 | 宅女深夜福利视频在线 | 一女被多男玩喷潮视频 | 久久综合给久久狠狠97色 | 一区二区三区免费在线视频 | 婷婷四虎东京热无码群交双飞视频 | 99久久精品免费视频 | 一级毛片在线播放 | 国产宅男 | 一出一进一爽一粗一大视频免费的 | 亚洲av无码国产一区二区 | 日本电影一区二区三区 | 粗大挺进尤物人妻中文字幕 | 欧洲国产伦久久久久久久 | 精品99牛牛视频 | 久久久人人人婷婷色东京热 | 5566中文字幕亚洲精品 | 伊人色综合一区二区三区影院视频 | 国产 校园 另类 小说区 | 亚洲欧美一区二区久久 | 日韩一区二区三区电影在线观看 | 毛片免费观看网址 | 国产精品免费久久久久软件 | 午夜精品18视频 | 欧美综合激情 | 黑人糟蹋人妻hd中文字幕 | 国产成人精品午夜福利 | 日本黄色激情片 | 亚洲视频免费在线看 | 欧美成人一区二区三区不卡视频 | 999国产精品视频 | 乌克兰大乳美女一级毛片 | 亚洲国产精久久小蝌蚪 | 国产午夜免费视频 | 久久99国产精品久久99无号码 | 国产成人十八黄网片 |