橡胶接头_橡胶软接头_可曲挠橡胶接头-河南伟创管道科技有限公司

讀書月攻略拿走直接抄!
歡迎光臨中圖網 請 | 注冊
> >
基于種群概率模型的優化技術-從算法到應用

包郵 基于種群概率模型的優化技術-從算法到應用

作者:姜群
出版社:上海交通大學出版社出版時間:2010-04-01
開本: 16開 頁數: 156
中 圖 價:¥36.0(7.5折) 定價  ¥48.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

基于種群概率模型的優化技術-從算法到應用 版權信息

  • ISBN:9787313063694
  • 條形碼:9787313063694 ; 978-7-313-06369-4
  • 裝幀:暫無
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

基于種群概率模型的優化技術-從算法到應用 本書特色

《基于種群概率模型的優化技術:從算法到應用(英文版)》共有9個章節組成,系統地討論了遺傳算法和分布估計算法的基本理論,并在二進制搜尋空間實驗性地比較了幾種分布估算法。在此基礎上深入地論述了構建一類新的分布估計算法的思路和實現方法,*后介紹了分布估計算法在計算機科學、資源管理等領域的一些成功應用實例。《基于種群概率模型的優化技術:從算法到應用(英文版)》可作為從事概率論、數量建模等課程研究的人員參考讀物。

基于種群概率模型的優化技術-從算法到應用 內容簡介

本書較系統地討論了遺傳算法和分布估計算法的基本理論,并在二進制搜尋空間實驗性地比較了幾種分布估算法。在此基礎上深入地論述了構建一類新的分布估計算法的思路和實現方法,*后介紹了分布估計算法在計算機科學、資源管理等領域的一些成功應用實例及分布估計算法的幾種有效改進方法。

基于種群概率模型的優化技術-從算法到應用 目錄

chapter 1 fundamentals and literature
1.1 optimization problems
1.2 canonical genetic algorithm
1.3 individual representations
1.4 mutation
1.5 recombination
1.6 population models
1.7 parent selection
1.8 survivor selection
1.9 summary
chapter 2 the probabilistic model -building genetic algorithms
2.1 introduction
2.2 a simple optimization example
2.3 different eda approaches
2.4 optimization in continuous domains with edas
2.5 summary
chapter 3 an empirical comparison of edas in binary search spaces
3.1 introduction
3.2 experiments
3.3 test functions for the convergence reliability
3.4 experimental results
3.5 summary
chapter 4 development of a new type of edas based on principle of maximum entropy
4.1 introduction
4.2 entropy and schemata
4.3 the idea of the proposed algorithms
4.4 how can the estimated distribution be computed and sampled?
4.5 new algorithms
4.6 empirical results
4.7 summary
chapter 5 applying continuous edas to optimization problems
5.1 introduction
5.2 description of the optimization problems
5.3 edas to test
5.4 experimental description
5.5 summary
chapter 6 optimizing curriculum scheduling problem using eda
6.1 introduction
6.2 optimization problem of curriculum scheduling
6.3 methodology
6.4 experimental results
6.5 summary
chapter 7 recognizing human brain images using edas
7.1 introduction
7.2 graph matching problem
7.3 representing a matching as a permutation
7.4 apply edas to obtain a permutation that symbolizes the solution
7.5 obtaining a permutation with continuous edas
7.6 experimental results
7.7 summary
chapter 8 optimizing dynamic pricing problem with edas and ga
8.1 introduction
8.2 dynamic pricing for resource management
8.3 modeling dynamic pricing
8.4 an ea approaches to dynamic pricing
8.5 experiments and results
8.6 summary
chapter 9 improvement techniques of edas
9.1 introduction
9.2 tradeoffs are exploited by efficiency-improvement techniques
9.3 evaluation relaxation: designing adaptive endogenous surrogates
9.4 time continuation: mutation in edas
9.5 summary
展開全部

基于種群概率模型的優化技術-從算法到應用 節選

《基于種群概率模型的優化技術:從算法到應用(英文版)》較系統地討論了遺傳算法和分布估計算法的基本理論,并在二進制搜尋空間實驗性地比較了幾種分布估算法。在此基礎上深入地論述了構建一類新的分布估計算法的思路和實現方法,*后介紹了分布估計算法在計算機科學、資源管理等領域的一些成功應用實例及分布估計算法的幾種有效改進方法。

基于種群概率模型的優化技術-從算法到應用 相關資料

插圖:other non,binary information.For example,we might interpret a bit-string of length 80 as ten 8 bit integers.Usually this is a mistake.and better results can be obtained by using the integer or real-valued representations directly.One of the problems of coding numbers in binary is that different bits have different significance.This Can be helped by using Gray coding,which is a variation on the way that integers are mapped on bit strings.The standard method has the disadvantage that the Hamming distance between two consecutive integers is often not equal to one.If the goal is to evolve an integer number,you would like to have thechance of changing a 7 into an 8 equal to that of changing it to a 6.The chance of changing 0111 to 1000 by independent bit-flips is not the same,however,as that of changing it to 01 10.Gray coding is a representation which ensures that consecutiveintegers always have Hamming distance one.1.3.2 Integer RepresentationsBinary representations are not always the most suitable if our problem more naturally maps onto a representation where different genes can take one of a setvalues.One obvious example of when this might occur is the problem of finding the optimal values for a set of variables that all take integer values.These values might beunrestricted,or might be restricted to a finite set:for example,if we are trying toevolve a path on square grid,we might restrict the values to the rest{0,1,2,3}representing{North,East,South,West}.In either case an integer encoding isprobably more suitable than a binary encoding.'When designing the encoding andvariation operators,it is worth considering whether there are any natural relationsbetween the possible values that an attribute Can take.This might be obvious forordinal attributes such as integers,but for cardinal attributes such as the compasspoints above,there may not be a natural ordering.

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 色菇凉天天综合网 | 黄大片日本一级在线a | 欧美久久一区二区三区 | 亚洲精品久久久口爆吞精 | 欧美一二三区在线 | 国产一区二区视频免费 | 成人网在线 | 免费a级毛片无码 | 亚洲精品一区二区三区中文字幕 | 欧美一级视频精品观看 | 久久亚洲国产精品123区 | 欧美一级专区免费大片野外交 | 尤物网站在线观看 | 四虎永久在线观看免费网站网址 | 成人精品久久 | 中文字幕无线码中文字幕免费 | 久久一本色系列综合色 | 麻豆国产丝袜白领秘书在线观看 | 国产va免费精品高清在线观看 | 久国产 | 欧美无人区码suv | 最新版天堂资源中文官网 | 男女做爰全过程免费视频 | 成人满18在线观看网站免费 | 宅男在线影院 | 找国产毛片 | 成人亚洲视频在线观看 | 日本不卡网站 | 麻豆果冻传媒精品国产av | 香蕉视频h | 国产精品女上位在线观看 | 久久99久久99精品免观看动漫 | 亚洲午夜久久久影院伊人 | 看全色黄大色黄大片毛片 | 7777精品久久久大香线蕉 | 国产熟女一区二区三区四区五区 | 人妻去按摩店被黑人按中出 | 色综合久久无码五十路人妻 | 午夜久久| 91国内外精品自在线播放 | 国产精品亚洲欧美大片在线看 |